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Abstract 

We consider the problem of tracking multiple maneuvering targets in clutter using switching 

multiple target motion models. A novel suboptimal filtering algorithm is developed by applying the 

basic interacting multiple model (IMM) approach, the joint probabilistic data association (JPDA) 

technique and coupled target state estimation to a Markovian switching system. The algorithm is 

illustrated via a simulation example involving tracking of two highly maneuvering, at times closely 

spaced, targets. 
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1    Introduction 

We consider the problem of tracking multiple maneuvering targets in clutter. This class of problem 

has received considerable attention in the literature [2],[5],[6],[11]. The switching multiple model 

approach has been found to be quite effective in modeling highly maneuvering targets [2], [4]-[7]. 

In this approach various "modes" of target motion are represented by distinct kinematic models, 

and in a Bayesian framework, the target maneuvers are modeled by switchings among these models 

controlled by a Markov chain. In the presence of clutter, the measurements at the sensors may not 

all have originated from the target-of-interest. In this case one has to solve the problem of data 

association. An effective approach in a Bayesian framework is that of probabilistic data association 

(PDA) [2], [4] for a single target in clutter and that of joint probabilistic data association (JPDA) 

[2], [5], [11] for multiple targets in clutter. 

It is assumed that the number of targets is known (say N) and that for each target, a track has 

been formed (initiated) and our objective is that of track maintenance. In [12] such a problem has 

been considered for a single target using multiple sensors, PDA and switching multiple models. The 

optimal solution (in the minimum mean-square error sense) to target state estimation given sensor 

measurements and absence of clutter, requires exponentially increasing (with time) computational 

complexity; therefore, one has to resort to suboptimal approximations. For the switching multiple 

model approach, the interacting multiple model (IMM) algorithm of [7] has been found to offer a 

good compromise between the computational and storage requirements and estimation accuracy 

[13]. In the presence of clutter, one has to account for measurements of uncertain origin (target 

or clutter?). Here too, in a Bayesian framework, one has to resort to approximations to reduce 

the computational complexity, resulting in the PDA filter [2], [5], [1], [12]. In [12] the IMM algo- 

rithm has been combined with the PDA filter in a multiple sensor scenario to propose a combined 

IMM/MSPDAF (interacting multiple model/ multisensor probabilistic data association filter) algo- 

rithm. In [2] and [11] multiple targets in clutter (but without using switching multiple models) have 

been considered using JPDA filter which, unlike the PDA filter, accounts for the interference from 

other targets. Various versions of IMMJPDA filters for multiple target tracking using switching 

multiple models may be found in [3], Sec. 6 of [5], [9] and [10]. While [9] and [10] present uncoupled 

filters (i.e. assume that different target states are mutually independent conditioned on the past 

measurements), [3] and [5] present IMMJPDA coupled filters where the conditional target state 

independence assumption is not made. It has been noted in [8] that the IMMJPDA coupled filter 

equations of [3] and [5] are heuristic. [8] presents an "exact" JPDA coupled filter for non-switching 

models using the framework of a linear descriptor system. 

In this correspondence we extend the approach of [9] which pertains to uncoupled filtering, to 

IMMJPDA coupled filtering. The only approximations made are those typical for IMM approaches; 

there are no other heuristics as in [3] and [5]. We use the standard Markovian switching state-space 



systems which, as discussed in Remark 4 in Sec. 3, is equivalent to the linear descriptor system 

framework of [8]. Track initialization (formation) is assumed to have been made for each target. 

"Standard" assumptions are used for JPDAF ([11], p. 310 of [5]): a measurement can have only 

one source; among the possibly several validated measurements, at most one of them can be target- 

originated and the remaining validated measurements are assumed to be due to false alarms or 

clutter, and are modeled as independently and identically distributed (i.i.d.) with uniform spatial 

distribution over the entire vaUdation region ("across all targets"). As in [12] and [9] we use 

sequential updating of the state estimates with sensor measurements. As noted in Remark 1 in 

Sec. 3, this is a suboptimal approach since joint measurement association events across sensors are 

not taken into account; for an optimal approach, one should follow [14]-[16] - see Remark 1 for 

further details. 

2    Problem Formulation 

Assume that there are total N targets with the target set denoted as T/\r := {1,2, • • •, N}. Assume 

that the dynamics of each target can be modeled as one of the n hypothesized models. The model 

set is denoted as Mn := {1,2, • ■ •, n} and there are total q sensors. For target r {r e T^), the event 

that model i is in effect during the sampling period (tk-i,tk] will be denoted by Mi{r). Although 

all the targets share a common model set, any two targets may be in different motion status from 

time to time. For the j-th. hj^othesized model (mode), the state dynamics and measurements of 

target r (r G 7}\r) are modeled as 

^k{r) = Fi_,ir)xk-iir) + Gi_,{r)4_,{r), (1) 

4(r) = h^'^ixkir)) + t/;{''(r)    for    / = 1, • • •, 9 (2) 

where Xk{r) is the system state of target r at t^ and of dimension Ux (assuming all targets share 

a common state space), ^[(r) is the (true) measurement vector (i.e. due to target r) from sensor 

I at tk and of dimension rizi, Fj^_i(r) and <?^_i(r) are the system matrices when model j is in 

effect over the sampling period {tk-i,tk] for target r and /i^-' is the nonlinear transformation of 

Xk{r) to zl{r) (Z = 1,2, • • •, q) for model j. The process noise vi_.^{r) and the measurement noise 

wj: (r) are mutually uncorrelated zero-mean white Gaussian processes with covariance matrices 

Qfc_i (same for all targets) and RJ^'^ (same for all targets), respectively. At the initial time to, the 

initial conditions for the system state of target r under each model j are assumed to be Gaussian 

random variables with the known mean xl{r) and the known covariance PQV)- The probability of 

target r in model j at to, A*o(^) = ■P{-^o(^)}' is also assumed to be known. The switching from 

model Mjt_i(r) to model Ml{r) is governed by a finite-state stationary Markov chain (same for 

all targets) with known transition probabilities pij = ■P{M^(r)|M|_i(r)}. Henceforth, tk will be 

denoted by fc. 



In coupled state estimation the states of all targets are estimated jointly [5]. To this end define 

the "global" state 

Xk:=col{xk(l),Xk{2),---,Xk(N)} (3) 

and the corresponding matrices/vectors J := col {ji, J2, • • • ,JN} where jm G Mn is model j for tar- 

get m, F,^ := block - diag {i^'^(1), i^'^(2), •••,i^'^(iV)}, G^= block - diag {G^I), G^^ 

C?^^(iV)}, vi := col {vf (1), t^^(2), • • • ,vl^{N)Y Then we have the state equation for the N tar- 

gets as 

xk = Fi_^xk-i + Gi_ivi_i (4) 

where E{v^v^'} = Qj, := block - diag IQ^^ •■■ ,Qk^\- Similarly define the global measurement 

vector at sensor I as 

4:=col{4(l),4(2),.-.,zi(JV)} (5) 

and the corresponding vectors h-^'\xk) := col |/i^*''(a;fc(l)), • • • ,h^'^'^(xk{N))\, 

wi' := col {<(!), «^^(2), • • • ,<(iV)} where E{wiW,'''} = R^' := block - diag {i?^ : • • ,i2f }. 

Then the measurement equation for N targets at sensor I (assuming no clutter and perfect detec- 

tions) is given by 

z[ = h^\xk)+w^/    for   l = h---,q. , (6) 

Define the global mode M/ := {M^^(l), • • •, M^^(iV)}. The various targets are assumed to evolve 

independently of each other. Therefore, the transition probability for the global modes are given 

by 

p/j:=P{Mf(l),...,Mr(iV)|M^i(l),...,M^^i(iV)} = nP'ur (7) 
1=1 

Similarly we have 

ni := P{Mi^{l), ■■■, M^(iV)} = n/^o (0- (8) 
1=1 

Regarding the measurements at sensor /, we follow the notations and definitions used used 

in [9].   At any time k, some measurements may be due to clutter and some due to the target. 

The measurement set (not yet validated) generated by sensor I at time k is denoted as Zj^ := 

{Zfc   i-^fe   )'"»-2^fc     } where m/ is the number of measurements generated by sensor I at time 

k.   Variable z^''' {i = l,---,mi) is the ith measurement within the set.   The vaHdated set of 

measurements of sensor I at time k will be denoted by Y^, containing mi (< mj) measurement 

vectors. The cumulative set of vaUdated measurements from sensor I up to time k is denoted as 

^i     — {yi, 5^2) ■ ■ ■) ^fc}- The cumulative set of vaHdated measurements from all sensors up to time 

A; is denoted as Z^ = {Zi^^\z^^^\ ■■■,Z^^''^} where q is the number of sensors. 



Assuming there are no unresolved measurements (i.e. measurement associated with two or more 

targets simultaneously), any measurement therefore is either associated with a target or caused by 

clutter. Our goal is to find the global state estimate x^^ '■= E{xk\Zi} and the associated error 

covariance matrix P^i^ = E{[xk — Xk\k][xk — ^k\k]'\2^i] where a;^. denotes the transpose of Xk- 

Included in the above formulation is state estimates of individual targets. 

3    IMM/JPDA Coupled Filtering Algorithm 

We now modify the IMM/JPDA algorithm of [9] to apply to the coupled system (3)-(8); it will be 

called IMM/JPDACF (CF stands for coupled filter). The approach of [9], in turn, is based on the 

approaches of [12], [11], [5] and [2]. As in [12] and [9], for convenience, we confine our attention 

to the case of 2 sensors; however, the algorithm can be easily adapted to the case of arbitrary q 

sensors. As the IMM/MSPDAF algorithm is well-explained in [12] and Sec. 4.5 of [5], the JPDAF 

algorithm is well-explained in Sec. 6.2 of [5] and Sec. 9.3 of [2] and the IMM/JPDA filter is given in 

detail in [9], we will only briefly outhne the basic steps in "one cycle" of the IMM/JPDA coupled 

filter. 

Assumed available: Given the state estimate ^^_2|^._^ := E{xk-i\Mj^_-^,Z^~^}, the associated 

covariance Pk^uk-i and the conditional mode probability fj,^_^ = P[M^_i\Zi~^] at time fc — 1 for 

each global mode J e Mn ■— Mn x ••■ x Mn- 

Step 3.1. Interaction — mixing of the estimate from the previous time (VJ G Mn)' 

predicted mode probability:   fi^' := P{Mj^\Z^~^} = '^pjjfil_^. (9) 

mixing probability:   /l"^ := P{MfeLi|Mj^,Zf-i} =;,/j/zi_i//i^-. (10) 

mixed estimate:   xH^^k-i ■= E{xk-i\Mi,Z^^} = ^^£i_i|fc-i/'-^. (11) 
/ 

covariance E{[xk-i - £2-i|fe-i][^'t-i ~ ^fc-i|fc-i]'l-^/'^^i'^) °^ the mixed estimate: 

Pk-i\k-i = 'Z{Pk-i\k-i + [4-i\k-i - 4-i\k-M-i\k-i - ^kU\k-i]'W^'- (12) 

Step 3.2. Predicted state and measurements for Sensor 1   (VJ e Mn)' 

State prediction:   H\k-i •=E{xk\M^,Zt''} = Fi!_ixli,^,^_,. (13) 

State prediction error covariance E{[xk — ^klk-ill^k - ^k\k-i\'\^k '^l~^}'• 

Pk\k-l = ^k-iPk-iik-i^k-i+Gk-iQk-iGk-i- (14) 



Using (2) and (13), the global mode-conditioned predicted measurement for sensor 1 is z^' := 

^'''^(^fclfc-i)- Using linearized (6), the covariance of the mode-conditioned residual i/^' ^ ' := Z/J" ' — 

zi'\ izl^'^ := col{zl^'^\ ..., 4(^-)}), is given by 

where H^' is the first order derivative (Jacobian matrix) of h'^'^{.) at xj^,_y Note that (15) 

assumes that Zj^   ' originates from the target r. 

Step 3.3. Measurement validation for sensor 1 (Vj 6 Mn)'- First perform measurement 

validation for each target r (r € 7/v) separately. For target r, the validation region is taken to be 

the same for all models, i.e., as the largest of them. Let 5^' (r) denote the Uzi x rizi submatrbc of 

Sj^' including the rows and columns of the latter numbered as (r — l)nzi+m, m = 1,2, • • •, r. That 

is, i?^' (r) is based on the information relevant to target r only. Let z-j[' (r) denote the n^i x 1 sub- 

column of Zi^' including the rows of the latter numbered as (r —1)71^1 +m,m = l,2,---,r; that is, 

zl''' (r) is the mode-conditioned predicted measurement of target r for sensor 1. Let (|J4.| = det(^)) 

jr:=aig!^max\Si'\r)\y (16) 

Then measurement z^^'-^ ( i = 1,2, • • •, Tni) is validated if and only if 

(4^'^ - t'\r)nst\r)]-Y,^'^ - zt\r)] < 7 (17) 

where 7 is an appropriate threshold. The volume of the validation region with the threshold 

7 is V^{r) := c„ji7"''^''^|S'^'"' {''')\^^'^ where Uzi is the dimension of the measurement and c„^i is 

the volume of the unit hypersphere of this dimension. After performing the validation for each 

target separately, the volume of validation region for the whole target set is approximated by 

Step 3.4. State estimation with validated measurements from sensor 1 (VJ € Mn)'- 

Given Zl := {z/J" ',z^r , • • •, 2^ }, define the set of validated measurement for sensor 1 at time 

k asY^ := {yj^^ \ j/^^ v • • tVk } where mi is total number of validated measurement for sensor 

1 at time k. and y,}^' := Z/J' *' with I < h < h < ■•■ < Imi <'mi when mi ^ 0. We now consider 

joint probabilistic data association across targets following [5] and [2], but for global target state; 

note that here we consider only sensor 1 (see also Remark 1 later). A marginal association event 

6ir is said to be effective at time k when the validated measurement j/^^*^ is associated with (i.e. 

originates from) target r (r = 0,•••,A'' where r = 0 means that the measurement is caused by 

clutter). Assuming that there are no unresolved measurements, a joint association event 9 is 

effective when a set of marginal events {6ir} holds true simultaneously. That is, 0 = ^^■y6ir^ 

where r, is the index of the target to which measurement yjj^''' is associated in the event under 

consideration. Define the vahdation matrix (as in [5] and [2]) 

n = [ujir]    i = l,---,mi,    r = 0,---,Ar (18) 
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where Wjr =1 if the measurement i hes in the validation gate of target r, else it is zero. A joint 

association event 0 is represented by the event matrix 

0(9) = [a)ir(e)]    i = l,---,mi,    r = 0,---,iV (19) 

where cDir(0) = 1 if 9ir C 9, =0 otherwise. A feasible association event is one where a measurement 

can have only one source (X^^Q '^ir(©) = 1 Vi) and where at most one measurement can originate 

from a target. The feasible association joint events 0 are mutually exclusive and exhaustive. 

Following the definitions in [5] and [2], define the binary measurement association indicator 

Ti(0) := Z)^i'^ir(0), (i = l,-"")"^!)) to indicate whether the validated measurement j/j.^'^ is 

associated with a target in event 0. Further, the number of false (unassociated) measurements in 

event 0 is 0(0) = Z)i^\[l — 7i(0)]- We will limit our discussion to nonparametric JPDA [5] and 

[2]. One can evaluate the likelihood that the global mode is J as 

e 

= '£p[Yk'\e,M^,Zt']P{Q}, (20) 
e 

where (Sec. 6.2 of [5], Sec. 9.3 of [2]) 

P{e} = ^ {[{PDY^^^H^ - PDy-'^^^^\ Ss{e) ■.= f:a),,(0), (21) 

PD is the detection probabiHty at sensor 1 (assumed to be the same for all targets) and e > 0 is 

a "diffuse" prior (for nonparametric modeling of clutter) whose exact value is irrelevant. Unlike 

[9], we do not assume that the states of the targets (including the modes) conditioned on the past 

observations are mutually independent. Then we have 

p[Y^\e,Mi,zt'] = vri'^^\[nm\Mi,zi-'] (22) 
where 1^^(0) C l^Ms a subset of the validated measurements Y^, consisting of the measurements 

associated with the targets as specified by 0. The number of measurements in ^"^^(0) equal mi — 

0(0) where 0(0) is the number of false alarms. 

Define a Mi x [mi — 0(0)] matrix Q,{@) as a submatrix of 0(0) obtained by deleting the first 

column and all null columns of 0(0). Then for a given 0, we have a measurement vector Y^{Q) 

of dimension (5^i^\ Ti{Q))nz\ given by 

n'(0) = (^.1 ®0'(e))col{yJ«, z = 1,2,• • • ,mi} (23) 

where we stack up all target-associated vahdated measurements in 0 in ascending order of targets, 

/„ is the n X n identity matrix, and the symbol ® denotes the Kronecker product. Define a 

[(mi — 0(0))n^i] X [Nrix] matrix H^' (0) as a submatrix of i7^'^ obtained by deleting all i-th block 



rows {rizi X .) of H/^' for which 5i{@) = 0. That is, we have modified if^' to keep only the block 

elements associated with target-associated measurements in 9. It then follows that the linearized 

measurement equation for 1^(0) is given by 

YkHe) = Hi'\@)xk + wi\ (24) 

Conditioned on the joint association event 0 and mode J, the "coupled" innovations is given 

by 

^^^■1(9)=/ ^fc(®)-^''(®)     ifM0) = lforsomere{l,2,...,iV}, ^^5) 
1   0 otherwise, 

where Z/^' (0) is a subvector of z^' obtained by deleting all i-th. block rows (rizi x 1) of z^' for 

which Si{0) = 0. The conditional pdf (probability density function) of the vaUdated measurements 

Y^ (0) given their origins (specified by 0) and the global target mode J, is given by 

p[nm\M^,Z',-']=M{Y,\@y,zi'\Q),si\Q)) (26) 
where 

M{x;y,P) := \27rP\-'/^exv[~{x - VYP'^X-y)] (27) 

The probability of the joint association event 0 given that global mode J is effective from time 

k — 1 through fc is 

pi\Q):=P{Q\M^,Zt\Yk'} = -^p[Yk'\0,Mi,Zt']P{@} (29) 

where the first term can be calculated from (22)-(28), the second term from (21), and c is a 

normahzation constant such that J2ePi^l^i!■>Zi~^^Yj^} = 1- 

Using £^n._i (from (13)) and its covariance Puf^_i (from (14)), one computes the partial update 

x^j^ and its covariance P^.'^^. following the standard PDAF [5], [2], except that the global state is 

conditioned on 0, not the marginal events Oir', details follow. 

Kalmangain:   T^fc^(0) = Pfc^jiff (0)'[5f (0)]-i. ^ (30) 

Partial update of the state estimate:^ £^j^(0) := E{xk\Q, M^, Z^~^,Yk} 

(31) 
H\k-i + W^(®>k   (®)     if '^^•(0) 7^ 0 for some l<r<N 

H\k-i ifJ.(0) = OVr€{l,2,-..,iV}. 

xi^, := E{xk\Mi,Zt\Y,'} = ^2Pi'\e)Si^,ie) (32) 



Covariance of xj;^, : P^^l = P^^,_, -    Y.    Pi\QWi{e)Si\Q)Wi{@)' 
e:e/eo 

e 

(33) 
. e J L e 

where ©o denotes 6 for which 5r{Q) = 0Vre{l,2,---, N}. Eqn. (33) follows in a manner similar 

to eqn. (3.4.2-10) in [5]. 

Step 3.5. The mode-conditioned predicted measurements for sensor 2 (VJ G M.n)'- The 

"predicted" measurement for sensor 2 is given by 

^k''--=h''H^i^). (34) 

The covariance of the global mode-conditioned residual i^^        := 2:^     — 2:^'   is given by 

5f :=£;{.f(^Vf(^)'|M,^Zr\nH = Ffp4;ijf' + i2f (35) 

where H^'   is the first order derivative (Jacobian matrix) of h^'^i-) at xjj^ . 

Step 3.6. Measurement validation for sensor 2: This is similar to Step 3.3 where we replace 

5^'^ with 5^'^ zl^^ with zl^^, mi with m2, V^{r) with V^{r), and V^.^ with V^. Details are similar 

to that in Step 3.3, hence are omitted. 

Step 3.7. Update with validated measurements for sensor 2 (VJ 6 Mn)'- This step is 

similar to Step 3.4. Using the validated measurements obtained from Step 3.6 and starting from 

x^jj. and PJ^I one computes the final updates 2^^ and Pu^., and the Ukelihood 

Af :=p[n2|M/,n\^f-i]. (36) 

The details are similar to that in Step 3.4, hence are omitted. 

Step 3.8. Update of mode probabilities (Vj G Mn, Vr € TJv): 

/.^= P[M/|2i^] = i/z^-Af Af (37) 

where c is a normalization constant such that Y^j yi-i = 1. For individual targets we have 

Mi-(r):=P[Mf(r)|2f]=X:---   E     f^   ... f^ ^J.-.>-i.i'-.>+i.-^^^ (38) 
jl=l Jr-l=ljr+l=l iN = l 

with J=(ji,---,j;v)in(37). 

Step 3.9. Combination of the mode-conditioned estimates (Vr e TAT): The final global 

state estimate update at time k is given by x^i^ = Ylj^k\kl^k ^^^ ^*^ covariance is given by 

Pk\k = J2j {Pk\k + [H\k - ^k\k][Xk\k - Sk\k]'} IJ'i- The state estimate £fc|fc(r) for target r is the 

riai-subvector of Xk\k consisting of elements (r — l)nx + m, m = 1,2, • • •, ria;. 



Remark 1. In the above algorithm we used sequential updating of the state estimates with 

measurements (one sensor at a time - see Steps 3.4 and 3.7) as in [9] and [12]. This approach is 

suboptimal but leads to computational savings as one does not have to simultaneously associate 

measurements across sensors (as in [14]-[16]). In Step 3.4 we are interested in (an approximation 

to) E{xk\M^, Zi~^,Yi^} which is decomposed as in (32) conditioned on 9's; measurements Y^ are 

not considered in this step. If one were to seek E{xk\M^,Zi~^,Yi^,Y^}, then we would have to 

follow the approach of [14]-[16] by picking all possible association events across sensors also. 

Remark 2. Compared to the uncoupled filtering of [9] where the equations are formulated 

conditioned on marginal association events 9ir, here we have conditioning on joint association events 

© for coupled filtering. Eqn. (26) does not decompose into the product of marginal probabiHties 

as in [9]. 

Remark 3.    Partition the set of all ©s into disjoint sets ©jS such that 

Oi := {© I Sr{e) = 5r{@) Vr, 0 G ©J 

where i = 1,2,- ■ ,K. For instance, for iV = 2, we have K = 4 with ©i = all ©s in which there 

are two validated measurements associated with two targets, ©2 = all ©s in which one validated 

measurement is associated with target 1 and none with target 2, ©3 = all ©s in which one validated 

measurement is associated with target 2 and none with target 3, and ©4 = all ©s in which none 

of the validated measurements are associated with any target. It is then easily seen that W^{Q), 

H^'^{e), Si'^(@) and /S^'^©) in Step 3.4, all are invariant for © E ©i. This fact can be used to 

simpUfy computations in (31)-(33). Similar comments apply to Step 3.7. 

Remark 4. If one substitutes (23) into (24), then one obtains a linear descriptor system type 

of equation such as (12) in [8]. Therefore, the standard state-space system framework used in this 

paper and the linear descriptor system framework used in [8] are equivalent (except that [8] uses 

non-switching models whereas we use Markovian switching models). We have retained the notation 

and formulation of the earMer papers in the field (e.g. [5], [7], [9] and [12]) whereas [8] prefers to 

follow a linear descriptor system formulation. 

4    Simulation Examples 

We now consider tracking two highly maneuvering targets in clutter. 

4.1    Example 1 

The True Trajectory: Target 1 starts at location [21689 10840 40] in Cartesian coordinates in 

meters. The initial velocity (in m/s) is [—8.3 - 399.9 0] and the target stays at constant altitude 

with a constant speed of 400m/s. Its trajectory is: a straight line with constant velocity between 

0 and 17s, a coordinated turn (0.15 rad/s) with constant acceleration of 60 m/s^ between 17 and 
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30s, a straight line with constant velocity between 30 and 55s, a coordinated turn (0.1 rad/s) with 

constant acceleration of 40 m/s^ between 55 and 70s, and a straight line with constant velocity 

between 70 and 87s. Target 2 starts at location [30000 - 3040 40] in Cartesian coordinates in 

meters. The initial velocity (in m/s) is [—382 157 0] and the target stays at constant altitude with 

a constant speed of 413m/s. Its trajectory is: a straight Une with constant velocity between 0 and 

44s, a coordinated turn (0.075 rad/s) with constant acceleration of 30 m/s^ between 44 and 59s, 

and a straight Une constant velocity between 59 and 87s. 

The Target Motion Models: These are exactly as in [9]. The motion models for the two 

targets are identical. In each mode the target dynamics are modeled in Cartesian coordinates 

as Xfc(r) = F(r)a;fc_i(r) + G{r)vk-i{r) where the state of the target is position, velocity and 

acceleration in each of the 3 Cartesian coordinates {x, y and z). Model 1 for nearly constant 

velocity model with zero mean perturbation in acceleration; Model 2 for Wiener process acceleration 

(nearly constant acceleration motion); Model 3 for Wiener process acceleration (model with large 

acceleration increments, for the onset and termination of maneuvers). The details regarding these 

models may be found in [9]. The initial model probabilities for two targets are identical: fi^ = 0.8, 

/XQ = 0.1 and fXQ = 0.1. The mode switching probability matrix for two targets is also identical and 

is as in [9]. 

The Sensors: Two sensors (we assume collocation, and time synchronization of observations, 

etc.) are used to obtain the measurements. The measurements from sensor I for model j are 

z[, = h^'^Xkj+wj^ , Z = 1,2, reflecting range and azimuth angle for sensor 1 (radar), and azimuth and 

elevation angles for sensor 2 (infrared). The range, azimuth and elevation transformations, respec- 

tively, are given by r = (x^ +y^-|- z^)^/^, a = tan~^(j//rc), e = tan~^[2;/(a;^ + y^)^/^]. The mea^ 

surement noise to^' for sensor / is assumed to be zero-mean white Gaussian with known covariances 

R^ = diag[9r,9ai] = diag[400m^, 49mrad^] with qai and Qr denoting the variances for the radar az- 

imuth and range measurement noises, respectively, and R? = diag[g'a2i9e] = diag[4mrad^, 4mrad^] 

with qa2 and qe denoting the variances for the infrared sensor azimuth and elevation measurement 

noises, respectively. Both sensors are assumed to be located at the coordinate system origin. The 

samphng interval was T = Is and it was assumed that the probability of detection PQ = 0.997 for 

both sensors. 

The Clutter: For generating false measurements in simulations, the clutter was assumed to 

be Poisson distributed with expected number of Ai = 20 x 10~^/m mrad for sensor 1 and A2 = 

2 X 10~'*/mrad^ for sensor 2. 

Other Parameters:    The gates for setting up the validation regions for both the sensors were 

based on the threshold 7 = 16 corresponding to a gate probability PG = 0.9997. 

Simulation Results:    The results were obtained from 1000 Monte Carlo runs. Fig. 1 shows the 

true trajectory of the two targets and the distance between the two targets as a function of time. 

The two targets start out far apart, move close to each other from 30 to 45 seconds, and then 
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move apart again. Fig. 2 shows the results of the proposed IMM/JPDACF based on 993 successful 

runs (target swapping occurred in 7 out of 1000 runs). Fig. 3 shows the results of the uncoupled 

IMM/JPDAF of [9] based on 982 successful runs (target swapping occurred in 18 out of 1000 

runs). Comparing Figs. 2 and 3 we see that when there is no target swapping, differences between 

the coupled and uncoupled filters are small. To assess the computational requirements of the two 

approaches, we computed the CPU time needed to execute one time step (averaged over 10 runs 

and 87 time steps in each run) in MATLAB 6.5 on a 1 GHz (Mobile) Pentium III operating under 

Windows XP (professional). The uncoupled IMM/JPDAF needs 0.1063 sees compared to 0.1369 

sees required by IMM/JPDACF. Thus with a 29% increase in computational cost, IMM/JPDACF 

results in a 61% fewer target swappings compared with uncoupled IMM/JPDAF. Finally, neither 

approach experienced any loss of tracks, only target swapping. 

4.2    Example 2 

We now consider the same secnario as that in Example 1 except for a linear shift in the y-direction 

in the trajectory of target 2. Target 2 now starts at [30000 - 3040 + d 40]m with d= -500, -250, 

250 or 500m. When d = 0, we get Example 1. Different values of d lead to different separations 

and encounters between the trajectories of the two targets: Fig. 5(a),(b) shows the true trajectory 

of the two targets for two different values of d (-500m and 500m). For each value of d, results 

were obtained from 100 Monte Carlo runs. Table 1 shows the number of successful runs (no target 

swapping) versus d for the two approaches IMM/JPDACF and IMM/JPDAF. Fig. 4(c)-(f) shows 

the position error versus time for different values of d averaged over only the successful runs. It is 

seen from Table 1 and Fig. 4 that IMM/JPDACF is either better than IMM/JPDAF (e.g. d=-250m 

or Om) or similar to IMM/JPDAF (other values of d: larger separation) in performance. 

5    Conclusions 

We proposed a novel IMM/JPDA coupled filtering algorithm for state (position, velocity and ac- 

celeration) estimation for multiple highly maneuvering targets in clutter. The algorithm was illus- 

trated via a simulation example where with a 29% increase in computational cost, IMM/JPDACF 

resulted in a 61% fewer target swappings compared with uncoupled IMM/JPDAF; neither approach 

experienced any loss of tracks. 
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Figure 1: Example 1. The true trajectories of the maneuvering targets (read left-to-right, top- 

to-bottom): (a) Position in the xy-plane. (b) x and y velocities, (c) x and y accelerations, (d) 

distance between the targets. 

d IMM/JPDACF IMM/JPDAF 

-500m 100/100 100/100 

-250m 99/100 96/100 

Cm 993/1000 982/1000 

250m 100/100 100/100 

500m 100/100 100/100 

Table 1: Example 2. Number of successful runs (numerator) out of 100 or 1000 Monte Carlo runs 

(denominator) for various values of y-shift d. 
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Figure 2: Example 1. Performance of the proposed IMM/JPDACF based on successful (993) runs 

(read left to right, top to bottom): (a) RMSE in position, (b) RMSE in velocity, (c) RMSE in 

acceleration, (d) CV model probability P[Ml(r)\Zi] for r = 1,2. (RMSE = root mean-square 

error; CV = constant velocity) 
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Figure 3: Example 1. Performance of the IMM/JPDAF of [9] based on successful (982) runs 

(read left to right, top to bottom): (a) RMSE in position, (b) RMSE in velocity, (c) RMSE in 

acceleration, (d) CV model probabihty P[M^(r)|2^^] for r = 1,2. (RMSE = root mean-square 

error; CV = constant velocity) 
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Figure 4: Example 2. The true trajectories of the maneuvering targets in terms of position in 

the xy—plane for two values of y-shift d. (read left-to-right, top-to-bottom): (a) d=-500m, (b) 

d=500m. Performance (RMSE in position) of the proposed IMM/JPDACF and the IMM/JPDAF 

of [9] based on successful runs for two values of y-shift d (read left to right, top to bottom): (c) 

d=-500m, IMM/JPDACF, (d) d=500m, IMM/JPDACF, (e) d=-500m, IMM/JPDAF, (f) d=500m, 

IMM/JPDAF. "^^ 


